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*Bellman-Ford: single-source shortest distance

*O(VE) for graphs with negative edges

*Detects negative weight cycles

*Floyd-Warshall: All pairs shortest distance

*O(V^3)
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Weight function w(a,b): weight of the direct path from a to b

Each vertex v has attributes:

d: current minimum distance from start to v

Previous: the vertex in the current shortest path from start to v 

just before v

Relax(u,v,w):

if v.d>u.d+w(u,v)

v.d=u.d+w(u,v)

v.previous=u
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*Bellman-Ford(G,w,s)

Set all v.d=∞ and s.d=0

Set all v.previous=null

For i=1 to |G.V|-1

For each edge (u,v) in G.E

Relax(u,v,w)



*Why does it work? 

*The shortest path from s to v contains at most |G.V|-1 

edges.  Consider a shortest path p <s,v1,v2,v3,v4…,vn>. 

For each iteration of the first for loop we add a vertex to 

this shortest path. E.g.: v1.previous=S. The shortest path 

from S to v1 is saved as v1.d. We now add v2 (because it 

is reachable from v1) and v2.previous=v1. This is never 

overwritten because v1 is indeed in the shortest path 

from s to v2 (because otherwise p would not be the 

shortest path: otherwise replace v1 by vx and we have 

created a shorter path). By induction it follows that after 

|G.V|-1 iterations we have considered all shortest paths 

with |G.V|-1 edges. 
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For each edge (u,v) in G.E

if v.d>u.d+w(u,v)

return False

Return True

Proof: 

Returns true correctly because: 

v.d=s(s,d)<=s(s,u)+w(u,v)=u.d+w(u,v)

Suppose <v0,v2,….,vn> is a negative edge cycle accessible from 

s where v0=vn:

Assume returns true. Then vi.d<=v(i-1).d+w(v(i-1),vi) for 1 to n.

Sum from i=1 to n-> 0<=w(v(i-1),vi), which contradicts:

sum_1_n(w(vi-1,vi))<0
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*Shortest-Path algorithm has optimum substructure:

*Consider shortest path v1->v2 with intermediate vertex vi. 

Then v1->…->vi must be the shortest path from v1->vi and vi-

>…->v2 must be the shortest path from vi->v2. Dynamic 

programming: 

*We don’t know which intermediate vertex to choose. We 

want all pair shortest-paths. 
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*Define A[a][b][k] to be the length of the 
shortest path from a to b with possible 
intermediate vertices 1,2,3,…k. 

*Set A[a][b][0] to the weight of the edge 
connecting a to b. 

*Recursive relation: A[a][b][k+1]=

*Min(A[a][k+1][k]+A[K+1][b][k]), A[a][b][k])

*Because we only need a single level of k we 
can use O(V^2) memory if desirable. 



*Code: 

*Set A[a][b][0]=w(a,b)

*For k=1 to |V|

For a=1 to |V|

for b=1 to |V|

A[a][b][k]=min(A[a][b][k-1],A[a][k][k-1]+A[k][b][k-1])

O(V^3) time 




